Synthesis of 2-Germatranylmethylsuccinimides

Zhongbiao Zhang and Ruyu Chen*

Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Received 31 May 1996

ABSTRACT

The title compounds were prepared by two methods: one by the reaction of 2-methylenesuccinimides with trichlorogermane and the other by the reaction of 2-methylenesuccinamic acids with trichlorogermane. The X-ray analyses showed that the geometry about the germanium atom was a slightly distorted trigonal bipyramid. © 1996 John Wiley & Sons, Inc.

INTRODUCTION

Derivatives of itaconic acid (2-methylenesuccinic acid) have been known as good plant hormones for a long time [1]. Germatranes have also been reported to have remarkable bioactivities [2], but the bioassays of them as plant-growth regulaters have not been investigated. To introduce germatranes to the structural skeleton of itaconic acid derivatives may give a new type of compound with interesting biologically active properties.

As a part of our investigation on this work, two convenient synthetic routes to 2-germatranylmethylsuccinimides are reported.

RESULTS AND DISCUSSION

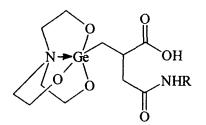
The reactions of 2-methylenesuccinimides 2 [3] with trichlorogermane were followed by the hydrolysis of

Dedicated to Prof. Louis D. Quin on the occasion of his retirement from the University of Massachusetts at Amherst. compounds 3 with water and dehydration of compounds 4 with triethanolamine (Scheme 1).

We have tried to prepare compounds 5 by the reaction of 2-methylenesuccinamic acids [3] with trichlorogermane, but compounds 1 were obtained instead of 5 (Scheme 2).

Compounds 6 can be converted into compounds 2 by the action of acetic anhydride with sodium acetate as the catalyst [3]. However, as herein reported, trichlorogermane acts as a dehydrating agent to cause compounds 6 or 7 to lose water before or after the addition reaction of HGeCl₃ to 6 (Scheme 3).

Both of the reaction sequences shown in Schemes 1 and 3 took place under mild conditions, and the easy workup make the methods practical. The products 1 were easily purified by recrystallization and were stable in air. There are no obvious differences between the two methods. The structures of all products were confirmed by spectroscopic studies (Tables 1 through 3) and elemental analyses (Table 4).


Crystallographic analysis of 1_c (Figure 1) has shown that the geometry about the germanium atom is a slightly distorted trigonal bipyramid. Important bond lengths and angles are given in Table 5.

EXPERIMENTAL

¹H NMR spectra were taken on a JEOL FX-90Q spectrometer. ¹H chemical shifts are reported in parts per million relative to internal tetramethylsilane. The nuclei that are deshielded relative to their respective standards are assigned a positive chemical shift. IR spectra were taken on a DS-301 spectrometer. Quan-

^{*}To whom correspondence should be addressed.

TABLE 1 ¹H NMR Data of Compounds 1^{a,b}

$R = C_6H_5$; 4-CH₃C₆H₄; 4-ClC₆H₄; 2-ClC₆H₄.

5

Compound	R	1-H and 2-H	3-Н	4-H	5-H
1 _a	7.27–7.60 (C ₆ H ₅) 7.30 (d, 4-Cl <i>C₆H₄</i> (o))	1.00-1.21	*	2.81(<i>t</i>)	3.75(<i>t</i>)
1 _b	7.54 (d, 4-Cl <i>C₆ H₄</i> (m))	1.05-1.31	2.49-2.82	2.79(<i>t</i>)	3.58(<i>t</i>)
1	7.20–7.49 (2-Čl <i>Č_eH₄</i>)́	1.10-1.38	2.50-2.72	3.13(<i>t</i>)	3.85(<i>t</i>)
1 _d	7.15–7.53 (̀3-Cl <i>Č_eH₄</i> ́) 7.12 (d, 4-Ch₃ <i>C_eH₄</i> (o))	1.09-1.36	2.62-2.91	2.98(<i>t</i>)	3.90(<i>t</i>)
1,	7.24 (d, 4-CH ₃ C ₆ H ₄ (m)) 6.90–7.32 (2-CH ₃ C ₆ H ₄)	1.02-1.20	3.29–3.33	2.80(<i>t</i>)	3.59(<i>t</i>)
1,	2.06 (s, $2 - CH_3 C_6 H_4$) 7.11–7.42 (3-CH ₃ C ₆ H ₄)	1.00-1.40	3.00-3.40	2.79(<i>t</i>)	3.62(<i>t</i>)
1 _g	2.18 (s, $3-CH_3C_6H_4$) 7.41 (d, $4-NO_2-C_6H_4$ (m))	1.11–1.34	*	3.17(<i>t</i>)	3.70(<i>t</i>)
1 _n	7.50 (d, 4-NO ₂ - $C_{e}H_{a}(0)$)	1.25-1.46	•	3.00(<i>t</i>)	3.42(f)
1.	$7.59-8.60 (3-NO_2-C_6H_4)$	1.20-1.41	3.19-3.41	2.88(<i>t</i>)	3.72(<i>t</i>)

^aUnresolved multiplets.

^bAll solvents are DMSO-d₆. *Overlapping with position 4-H.

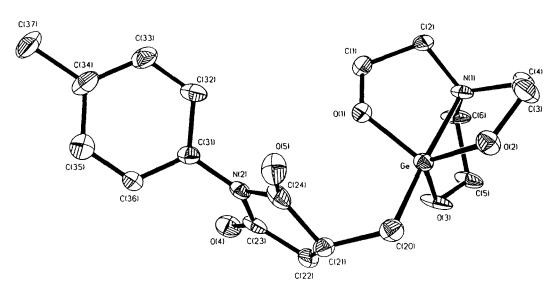
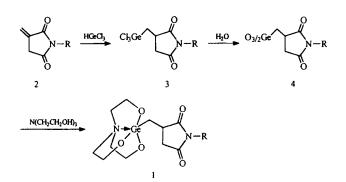



FIGURE 1 The molecular structure of compound 1_e.

TABLE 2 IR Spectral Data of Compounds

Compound		<i>IR cm</i> ⁻¹ (KBr)					
1,	3402.0	3189.0	2957.0	1731.8	1669.5		
-	1495.6	1397.2	1254.0	1186.2	1091.4		
	1067.8	1031.8	925.1	900.4	872.7		
1 _b	3412.0	3142.0	2960.5	1776.8	1702.9		
2	1489.6	1400.7	1272.3	1184.5	1100.8		
	1070.1	1021.1	928.3	901.2	868.8		
1,	3412.0	3112.0	2950.0	1771.7	1700.0		
•	1511.8	1447.2	1403.7	1274.4	1186.6		
	1100.9	1071.0	1021.0	929.1	902.2		
	873.4						
4; 1 ,	3390.5	3109.0	2951.5	1768.9	1700.0		
4, '	1489.9	1449.0	1381.9	1270.7	1186.9		
	1099.9	1067.6	1019.8	928.4	900.5		
	873.1						

a: R=C₆H₅; b: R=4-ClC₆H₄; c: R=2-ClC₆H₄; d: R=3-ClC₆H₄; e: R=4-CH₃C₆H₄; f: R=2-CH₃C₆H₄; g: R=3-CH₃C₆H₄;

h: $R=4-NO_2C_6H_4$; i: $R=3-NO_2C_6H_4$.

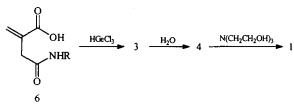
SCHEME 1

TABLE 3 Mass Spectral Data of Compounds 1ª

Compound	M +	M ₁ (**N(CH ₂ CH ₂ O) ₃ Ge+)	$M_2(M_1CH_2O)$	M ₃ (M ₂ –CH ₂ O)	**GeOH	
1.	408(28)	220(100)	190(74)	160(98)	91(19)	
1	442(Ì16)	220(76)	190(53)	160(78)	91(19)	
1	422(26)	220(76)	190(87)	160(100)	91(22)	
1 _r	422(21)	220(100)	190(56)	160(94)	91(42)	

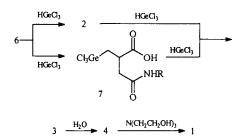
*Relative intensity in parentheses.

TABLE 4 Quantitative Elemental Analyses Data of Compounds 1


Compd.				Elemental Analyses (%)										
		Ma	Мр	Yieldª	Yield*	C	alculate	d	(N	Found lethod /	4)		Found lethod E	 3)
	(°C)	(%, Method A)		С	Н	N	С	Н	N	С	Н	N		
1,	191-3	49.1	70.2	50.18	5.45	6.89	49.93	5.23	6.70	49.97	5.28	6.45		
1,	194-6	57.6		51.37	5.75	6.66	51.80	5.84	6.89					
1	176-7	70.5	81.3	51.37	5.75	6.66	51.12	5.67	6.51	51.69	5.83	6.18		
1	180-2	49.7		51.37	5.75	6.66	51.24	5.56	6.58					
1	231-3	57.9	66.7	46.27	4.80	6.35	45.98	4.73	6.38	46.75	4.93	6.31		
1,	194-6	78.5	85.9	46.27	4.80	6.35	45.96	5.02	6.14	46.11	4.91	6.38		
1,	196-8	63.7		46.27	4.80	6.35	46.05	4.93	6.29					
1,	166-8	62.7		45.19	4.68	9.30	45.53	4.72	8.90					
1 <mark>.</mark>	164-6	79.8		45.19	4.68	9.30	45.36	4.72	9.66					

^aYield determined by isolation.

TABLE 5 Important Molecular Parameters of Compound 1.


Atoms	Ge-O(1)	GeO(2)	GeO(3)	Ge-N(1)	G e- C(20)	O(1)-Ge-O(2)	O(2)-Ge-O(3)	O(1)–Ge–O(3)	N(1)Ge C(20)
Bond length (Å) ^a Bond angles (degrees) ^a	1.808 (4)	1.819 (5)	1.797 (5)	2.241 (6)	1.978 (7)	119.2 (3)	118.4 (2)	116.1 (3)	177.2 (3)

*Numbers in parentheses are estimated standard deviations in the least significant digits.

 $R = C_6H_5$; 4-CH₃C₆H₄; 4-ClC₆H₄; 2-ClC₆H₄.

SCHEME 2

SCHEME 3

titative elemental analyses were carried out on a Yana MT-3 instrument. Mass spectra were recorded on a Hewlett-Packard 5988 instrument.

General Procedure for the Preparation of Compounds 1

Method A (from compounds 2). To a solution of trichlorogermane (5 mmol) in ether (50 mL) was

added compounds 2 (5 mmol) at room temperature with magnetic stirring. The reaction was monitored by thin-layer chromatography (TLC). The solvent was removed under vacuum after the reaction had been completed. The residue (compounds 3) was hydrolyzed directly with water (50 mL). A white solid that formed was filtered off, washed with water, and dried under vacuum overnight to give compounds 4. Compounds 4 without purification reacted with triethanolamine (5 mmol) in ethanol (25 mL) by refluxing for 4 hours. The precipitate that formed was filtered off and washed with acetone. The solid was recrystallized from absolute ethanol to yield 1.

Method B (from compounds 6). To a solution of trichlorogermane (10 mmol) in ether (50 mL) was added compounds 6 (5 mmol). The procedure was the same as that of method A.

ACKNOWLEDGMENTS

This project was supported by the National Natural Science Foundation of China and the National Laboratory of Elemento-Organic Chemistry.

REFERENCES

- E. N. Karanov, Dokl. Bolg. Akad. Nauk, 28(8), 1975, 1085.
- [2] V. F. Mironov, A. K. Nuridzhanyan, A. E. Feoktistov, Metalloorg. Khim., 4(3), 1991, 608.
- [3] Nm. IbraLim Awad, J. Org. Chem., 26, 1961, 4126.